Fluorescent carbonaceous nanodots for noninvasive glioma imaging after angiopep-2 decoration.

نویسندگان

  • Shaobo Ruan
  • Jun Qian
  • Shun Shen
  • Jiantao Chen
  • Jianhua Zhu
  • Xinguo Jiang
  • Qin He
  • Wuli Yang
  • Huile Gao
چکیده

Fluorescent carbonaceous nanodots (CDs) have attracted much attention due to their unique properties. However, their application in noninvasive imaging of diseased tissues was restricted by the short excitation/emission wavelengths and the low diseased tissue accumulation efficiency. In this study, CDs were prepared from glucose and glutamic acid with a particle size of 4 nm. Obvious emission could be observed at 600 to 700 nm when CDs were excited at around 500 nm. This property enabled CDs with capacity for deep tissue imaging with low background adsorption. Angiopep-2, a ligand which could target glioma cells, was anchored onto CDs after PEGylation. The product, An-PEG-CDs, could target C6 glioma cells with higher intensity than PEGylated CDs (PEG-CDs), and endosomes were involved in the uptake process. In vivo, An-PEG-CDs could accumulate in the glioma site at higher intensity, as the glioma/normal brain ratio for An-PEG-CDs was 1.73. The targeting effect of An-PEG-CDs was further demonstrated by receptor staining, which showed An-PEG-CDs colocalized well with the receptors expressed in glioma. In conclusion, An-PEG-CDs could be successfully used for noninvasive glioma imaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual targeting effect of Angiopep-2-modified, DNA-loaded nanoparticles for glioma.

Gene therapy offers a promising cure of brain glioma and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is able to induce cell apoptosis of glioma selectively without affecting the normal cells. In this study, the nanoscopic high-branching dendrimer, polyamidoamine (PAMAM), was selected as the principal vector. Angiopep-2, which can target to the low-density lipoprotein recepto...

متن کامل

Decoration of size-tunable CuO nanodots on TiO2 nanocrystals for noble metal-free photocatalytic H2 production.

We report a simple yet effective approach for the decoration of the TiO2 nanocrystal surface with size-tunable CuO nanodots for high-performance noble metal-free photocatalytic H2 production. Modification with polyacrylic acid enables the surface of TiO2 nanocrystals to be selectively deposited with Cu(OH)2 nanodots, which can be subsequently converted to CuO through dehydration without changin...

متن کامل

In vivo imaging of tumour bearing near-infrared fluorescence-emitting carbon nanodots derived from tire soot.

NIRF imaging of carbon nanodots derived from tire soot was clearly visualized in glioma in vitro and in vivo.

متن کامل

Transport characteristics of a novel peptide platform for CNS therapeutics

New and effective therapeutics that cross the blood-brain barrier (BBB) are critically needed for treatment of many brain diseases. We characterize here a novel drug development platform that is broadly applicable for the development of new therapeutics with increased brain penetration. The platform is based on the Angiopep-2 peptide, a sequence derived from ligands that bind to low-density lip...

متن کامل

Angiopep-2-conjugated poly(ethylene glycol)-co- poly(ε-caprolactone) polymersomes for dual-targeting drug delivery to glioma in rats

The blood-brain barrier is a formidable obstacle for glioma chemotherapy due to its compact structure and drug efflux ability. In this study, a dual-targeting drug delivery system involving Angiopep-2-conjugated biodegradable polymersomes loaded with doxorubicin (Ang-PS-DOX) was developed to exploit transport by the low-density lipoprotein receptor-related protein 1 (LRP1), which is overexpress...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioconjugate chemistry

دوره 25 12  شماره 

صفحات  -

تاریخ انتشار 2014